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On the Initiation of Melt Fracture 

L. V. MCINTIRE, Department of Chemical Engineering, Rice University, 
Houston, Texas 77001 

synopsis 
The importance of (711 - 722)/712 (sometimes called the Weissenberg number) in deter- 
mining the onset of melt fracture is examined using classical linearized hydrodynamic 
stability analysis. The constitutive relation used is that proposed by Bird and Car- 
reau. It is shown that simple shearing flow of a viscoelastic fluid becomes unstable at a 
critical value of the Weissenberg number. Implications with regard to polymer pro- 
cessing are discussed. 

INTRODUCTION 
The presence of a hydrodynamic instability in the extrusion of polymer 

melts is a problem in the processing of viscoelastic materials. The cause 
of this instability is still not completely understood despite the extensive 
work of Tordella,'V2 Bagley et al.,3-6 Pearson,6-8 Bogue and White,9s10 
Han,11J2 and many others.13 The recent paper by Ballenger et al." 
summarizes many possible approaches taken in the past and calls attention 
to the critical role played by the ratio of the first normal stress difference 
divided by the shear stress, N I  = (711 - 722)/712 (see Fig. 1). Below, a 
simple classical linearized hydrodynamic stability problem is posed as a 
model for the initiation of instabilities in the extrusion process. It is 
shown that a t  a critical value of Nl a hydrodynamic instability is developed. 
Implications with respect to melt fracture are then discussed. 
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Fig. 1. The physical situation. 

CONSTITUTIVE RELATION 
The constitutive relation used in this work is that proposed by Bird 

and Carreau16;16 
m 

1 = S + PI = mp[(t  - t'),II(t')] [(I + i) B + C] dt' (1) 
P 
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where 
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axt ax5 
B45 = b2,1 Bz,l - 6 1 5  

722 - raa 6=--- - ratio of normal stress differences in simple shearing flow 
711 - 222 

6 t 5  = Kroneker delta 

q p , X l p , X ~ p  = material constants 

and 

II(t') = second invariant of the rate of strain tensor. 

This equation is of the same general form as many recently proposed 
modern nonlinear viscoelastic constitutive relations. The exact form of the 
relation is not crucial to the argument below, but the model must a t  least 
allow for finite normal stress differences. 

DEVELOPMENT OF THE HYDRODYNAMIC STABILITY PROBLEM 

Consider the model fluid given above flowing in plane Couette flow 
(simple shearing flow) with a superposed temperature gradient (see Fig. 1). 

A solution to the conservation equations, neglecting viscous dissipation 
and assuming a Fourier heat conduction vector is given by" 

where @ = (To - Tl)/d and i = magnitude of the velocity gradient. 
Following the usual linearized hydrodynamic stability theory (see Chan- 

drasekhar'*), the steady-state solution is perturbed by a small disturbance. 
It is assumed that the altered motion satisfies the conservation equations. 
All products of the disturbances and their derivatives are neglected (linear- 
ization assumption). The steady-state flow is then subtracted, and the 
result is a set of linear partial differential equations for the disturbances. 
The pressure disturbance is normally eliminated by taking the curl of the 
linear momentum conservation equation. In  the present problem three 
additional assumptions are made: 

The Boussinesq assumption, that is, all the material fluid properties 
are unaffected by the temperature fields except the density in the gravita- 

1. 
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tional force form. 
tion of temperature in this term: 

The variation of density is assumed to be a linear func- 

P = P(1 + cuay) 
where a = - - = volume coefficient of expansion and V = specific 

volume. 
2.  The disturbances depend only on two coordinates-the flow direc- 

tion and the vertical direction. 
3. The normal mode analysis is used. 
The equations are non-dimensionalized using the following variables : 

v ("7 a T  

21 
jj = (% u,, %) 

2 
€ = d  

b_ = "2) 
at u at 

T' T *=- -=-  
To - TI AT 

--i dv(q) 

vx dq 
US = - - exp(iv& + at) 

0 = e(q) exp(iv,t + at) 

where vz = disturbance wave number (real), a = disturbance growth rate 
(complex), and i = 4-1. The reduced linearized momentum and energy 
conservation equations for the disturbance functions u(q) and e(q) are 
given by 
Momentum: 
Re(l+ aA)2(aD2u + iv,qD%) = (1 + a~)D4u + (2 + aA)(iv,A - ivzB)Dav 
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Energy : 
Pe(1 + d)2(d3 + iv,& = ( 1  + U X ) ~ [ R U V ~ %  + DZe] (5) 

where 
agATd3paC, 

kP0 
Ra = Rayleigh number = 

Pod2+ Re = Reynoldsnumber = - 
PO 

pod,,id2 Pe = Peclet number = - 
k 

g ( 4  = 2[3 + 3 ( 4  + ( 4 ' 1  
h(aX) = 6[4 + 6uX + ~ ( U X ) ~  + ( U A ) ~ ]  

m 

f~~ = mpXzpZ - non-Newtonianviscosity 
P = l  

It should be noted here that: N1 = A - B = (711 - rzz)/m = reduced 
first normal stress difference and N2 = B = ( 7 2 2  - 7 8 3 ) / 7 1 2  = reduced 
second normal stress difference. 

Equations (4) and (5) are simplified somewhat by assuming that near 
the neutral stability curve, u << 1 and all terms of order aa are neglected. 
Also, as experimental information is not available, it is assumed C = E = 
0. 

Momentum: 

a[Re D2v - X[D% - 2Re iv2qD2v + i[v,(A - B)D% - 28111 

Energy : 
a[Pe 6 - X[2Ra~,~v - 2Pe iv2qe + 2D2e1l 

The resulting equations to be solved below are given by 

= D4v - Re ivz7D2v + 2iv,(A - B)D3v - 0 (7) 

= RavZ2v - Pe iv& + Dae (8) 
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with boundary conditions 

a t q =  '3. v = D v = O  
e = o  (9) 

SOLUTION OF THE PERTURBATION EQUATIONS 

The method of solution employed is a modified Galerkin procedure due 
mainly to Finlaysonlg and used successfully by others in similar hydro- 
dynamic stability  problem^.'^*^ The functions v(q)  and e(s) are approxi- 
mated by a complete set of functions which satisfy the problem boundary 
conditions. The coefficient of each approximation function is determined 
by making the equation residuals orthogonal to the set of approximation 
functions in the domain of interest. This procedure gives a set of 2N 
algebraic equations for the 2N unknown coefficients. Finlays~n'~ modi- 
fied this technique by allowing the coefficients to be time dependent. The 
left-hand side of eqs. (7) and (8) are then regarded as being differentiated 
with respect to time rather than multiplied by a: 

Putting these approximations into eqs. (7) and (8), forming the equation 
residuals, and orthogonalizing with respect to the aj and 4 j  over - 3 < q  
results in the following set of equations, represented symbolically by 

_ -  - HA dA 
dt 

where A is a column matrix such that A T  = (all. . .aN1,a12. * *aN2)  and H 
is a 2N-by-2N complex valued matrix whose coefficients are functions of the 
dimensionless groups of the problem and the disturbance wave number. 
The condition of stability is that all of the eigenvalues of H have negative 
real parts. The dimensionless groups and wave number can be varied to 
determine the point of neutral stability-the point where one uI = 0. 
Numerically, it was found that taking three terms in each expansion (N = 
3) produced agreement to four places with the tabulated values of critical 
Rayleigh number for the Newtonian problem given in Chandrasekhar. l8 

This value of N was used for all the reported numerical work. 

RESULTS AND DISCUSSION 

It is of interest to note that the only non-Newtonian parameter appear- 
ing in eqs. (7) and (8) is B - A = -N1 (recalling the assumption C = 
E = 0). This is similar to the work of McIntire and S~howalter'~ who 
examined the same problem for a second-order fluid and small values of N I  
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Fig. 2. Marginal Rayleigh numbers as a function of disturbance wave number. The 
critical Rayleigh number is indicated by the dotted line. 

(N1 < 0.5). The results for the critical Rayleigh number are extremely 
interesting. As shown in Figures 2 and 3, when NI is increased, for given 
values of Reynolds number and Prandtl number, the critical Rayleigh 
number (dimensionless temperature gradient) first increases, then de- 
creases rapidly; and at  a value of 2.25 < NI < 2.5, a flow with zero Ray- 
leigh number is unstable. This indicates a purely rheological hydro- 
dynamic instability with no buoyancy eff ecta, as isothermal Newtonian 
plane Couette flow is known to be stable at all Reynolds numbers to linear- 
ized disturbances. The critical wave number of the instability is quite 
large. The implications with regard to melt fracture are interesting. This 
analysis indicates that simple shearing flow of a viscoelastic material be- 
comes unstable at a critical value of (711 - 7%)/712 = N1. This is in agree- 
ment with the collected experimental results of Ballenger et al.14 and others. 
Curves of N1 as a function of shear rate are given in the work of Ballenger 
et al.14 and are shown qualitatively in Figure 4. In the range of shear rates 
where data are available, two types of behavior are shown: (a) N1 mono- 
tone increasing with shear rate, and (b) NI passing through a local maximum 
and local minimum with increasing shear rate. 

Behavior of type (b) is interesting in that there are sometimes two 
regions of stable operation of extrusion; a low shear rate region and a high 
shear rate region. If a critical value of N1 is the determining factor of 
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the melt fracture instability, then the high shear rate region of the local 
minimum of NI may be responsible for the second region of stable opera- 
tion. This is admittedly a speculation, but from a quantitative stability 
result. Investigation is proceeding into the effects of allowing viscous 

"I 
Fig. 3. Critical Rayleigh number &s a function of the rheological parameter Nt 

(Weissenberg number). 

f (sec-9 
Fig. 4. Qualitative behavior of NI as a function of shear rate for polymer melts. 
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dissipation, non-zero rheological parameters C and E,  and of changes in 
Reynolds and Prandtl numbers. 

CONCLUSIONS 

A quantitative explanation, using classical linearized hydrodynamic 
stability theory, of the possible importance of the parameter Nl = (rll - 
r22)/~12 in the problem of melt fracture has been given. The results in- 
dicate that a t  a critical value of N I ,  simple shearing flow of a viscoelastic 
material exhibits a hydrodynamic instability. This is in dramatic con- 
trast to a Newtonian fluid where hydrodynamic instability in isothermal 
simple shearing flow is not found. An explanation of the high and low 
shear rate range of stable operation in extrusion processes is also postulated. 

The author would like to acknowledge partial financial support received from the 
National Aeronautics and Space Administration Grant NGR-44-006. 
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